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SUMMARY

Octodon degus (O. degus) is a diurnal rodent that spontaneously develops several physiopath-

ological conditions, analogous in many cases to those experienced by humans. In light of

this, O. degus has recently been identified as a very valuable animal model for research in

several medical fields, especially those concerned with neurodegenerative diseases in which

risk is associated with aging. Octodon degus spontaneously develops b-amyloid deposits anal-

ogous to those observed in some cases of Alzheimer’s disease (AD). Moreover, these depos-

its are thought to be the key feature for AD diagnosis, and one of the suggested causes of

cell loss and cognitive deficit. This review aims to bring together information to support

O. degus as a valuable model for the study of AD.

Introduction

One of the major areas of interest in the field of neuroscience is

the study of age-related brain pathologies. Understanding the ori-

gin of such pathologies, as well as how they progress through dif-

ferent cellular mechanisms and how this process finally affects

cognitive and behavioral processes is essential for developing ther-

apies and intervention strategies. Among the vast variety of brain

pathologies, Alzheimer’s disease (AD) deserves special attention.

Being a neurodegenerative disease, the symptoms do not appear

spontaneously, but, unlike in the case of a psychosis or amnesia,

gradually. The pathology progresses relentlessly until the symp-

toms are manifest and the memory function, as well as other cog-

nitive domains such as orientation, problem solving, or even

changes in personality, become apparent. In most cases, patients

are no longer able to take care of themselves and require full-time

care [1].

Basic Research in Alzheimer’s Disease

There are currently no approved disease-modifying treatments

that are able to halt or slow down the pathology in AD or other

common neurodegenerative disease. There are, however, vast

ranges of different pharmacological and psychological therapies in

development stages that aim to slow down the advance of func-

tional loss. However, it is clear that we need to understand more

about the cause of this disease and its natural progression if we are

to understand when and how to treat it.

There are several approaches to the study of AD, including those

based on cellular models [2–4]. Nonetheless, although these mod-

els may be very useful for unraveling the molecular mechanisms

that underlie the symptomatology, there is a great gap between

the conclusions deduced from them and the clinical outcome that

this disease displays. On the other hand, the use of animal species

may contribute not only to understanding cellular and pathophys-
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iological characteristics of Alzheimer’s, but also to reproduce the

cognitive deficits shown in patients. In our mind, this could seem

a more ecological and appropriate approach and one more suited

for a better appreciation of the different features of the illness. In

this sense, we could say that animal models are good for their

capacity to imitate both pathophysiological conditions and behav-

ioral outcome (if any). Therefore, it is fundamental for such mod-

els to be able to measure cognitive and behavioral function in an

accurately and reliably way.

A number of animal models have been generated in an attempt

to reproduce AD pathology. Most of these models have used

rodents, and there have been some promising advances [5–7].

Several studies have demonstrated that Alzheimer pathology

markers are absent in wild-type rodents, making it necessary to

generate transgenic animals overexpressing human amyloid pre-

cursor protein (b-APP) harboring familial AD mutations [8–10] or

to perform intracerebral injections of Ab aggregates [11,12] to

achieve homologous states of the disease.

Despite the wide range of animal models that are currently used

in the study of behavioral and physiopathology features of AD

[13], rodents are the most utilized. In the last decades, for

instance, the number of transgenic models that have been devel-

oped has remarkably increased, widening the alternatives and tar-

geting those characteristics that most significantly are identified

within this neurodegenerative disease [14]. As the Ab cascade is

the main hypothesis for the AD, the achievement of models that

lead to the development of such characteristics is a milestone for

the advance in understanding this pathology.

In this sense, following the Ab hypothesis, transgenic models

are mainly derived from different branches that overexpress three

hallmarks identified as regard the AD: APP protein, presenilin 1

and 2, and tau protein [15], aiming to develop the characteristic

amyloid accumulation and neurofibrillary tangles (NFTs) [16].

The major advantage of these models is that they succeed in repro-

ducing a similar pathophysiological and behavioral outcome that

is observed among patients with AD [17,18]. However, although

transgenic models have proved their value for the study of AD,

they raise important restrictions.

In the first place, to our view, the most important limitation

these models present is the need for genetic and/or pharmaco-

logical manipulation to reach the inherent pathophysiological

state of Alzheimer’s. For instance, it is known that patients

with AD show a significant neuron loss [19], and this feature

has to be implanted in the mouse because even transgenic

models show no such loss without manipulation [20]. Another

important similarity between human and rodent pathology that

these models lack of is the anatomical distribution of the senile

plaques and NFT accumulation [17]. In humans, neuronal

death derived from these two properties has been primarily

located in the prefrontal and parietal cortices (mainly hippo-

campus) [16]. However, this allocation has not been achieved

with the different models available. Taking this into account,

the availability of a model that may cover these limitations

would be undoubtedly appreciated (Table 1).

In recent years, a rodent endogenous to Chile, the Octodon degus

(O. degus) has gained prominence as a valued model for many dif-

ferent diseases, including those related with neurodegeneration,

as this animal may develop naturally several symptoms that can

be linked to a similar number of pathological conditions (Fig-

ure 1). Because of its particular diurnal cycle, it has frequently

Table 1 Advantages and disadvantages of the Octodon degus with respect to other very commonly used rodent models for AD [10,13]

Model Line Advantages Disadvantages

TAU transgenic

mice [72,73]

✓PrP Accumulation of hyperphosphorylated

tau

External manipulation

✓mThy1.2 Intracellular tau tangles Phenotype not representative of AD

✓R406W Cognitive impairment Tau positive astrocytes, not common in AD

✓V337M Neural plasticity impairment Regional expression of tau different in what

is observed in AD

APP transgenic

mice [74,75]

✓APP23 Ab deposits No tau pathology

✓PS2APP Senile plaques immunoreactive for

hyperphosphorylated tau

Lack of neuronal and synaptic loss

Cognitive impairment External manipulation

Triple transgenic

mice [6,10,76]

✓3xTg-AD Ab deposits Lack of neuronal and synaptic loss

✓Tg2576 Mutant PS1, PS2, and ApoE External manipulation

Senile plaques

Neurofibrillary tangles

Cognitive impairment

Octodon degus

[13,28,29,33]

– Complete physiological phenotype Interindividual variability

Age-related cognitive decline Breeding

Ab deposits

Hyperphosphorylated tau

Extensive neuronal loss associated

with age

Impaired neural transmission

Gliosis and Inflammation

AD, Alzheimer’s disease; APP, amyloid precursor protein.
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been used in circadian studies [21,22]. It is also a highly social

rodent, which explains its role in social and neuroaffective

research [23,24]. However, over the last few years, the participa-

tion of degus in the study of neurodegeneration has suggested that

this area of research is the most promising application of this

model. This diurnal caviomorph rodent lives up to 7 years average

in captivity [25], making it per se an interesting model for use in

longitudinal studies, including those related in the neuropsycho-

biology of aging, and AD.

Octodon-Human Ab Aggregates
Similarities

Among the different hypotheses raised to explain the origin and

evolution of AD, the most widely held is that which stresses the

importance of cholinergic neurodegeneration and the appearance

of two principal markers: the NFTs formed through the dysfunc-

tional hyperphosphorylation of tau protein, and the deposition of

Ab aggregates, which are thought to be the trigger for neuronal

death [26]. However, the relationship between these two ele-

ments is not clear, although several hypotheses have attempted to

link them [26,27].

A few years ago, Inestrosa et al. [28] demonstrated that O. degus

naturally develops characteristic histopathological hallmarks rem-

iniscent to those typically found in patients with AD. The discov-

ery showed that this rodent, in its natural environment, might

produce plaques in different brain areas [29], including hippocam-

pus and frontal cortex, both of which are severely affected in

patients with AD [16]. Moreover, immunohistochemical and

genetic analyses performed on the O. degus revealed a high degree

of similarity between human deposits and the Ab precursor pro-

tein (Ab-PP). Also, RT-PCR analysis showed the O. degus and

human Ab peptide sequence to be 97.5% homologous [28]. This

animal presents only one amino acid substitution with respect to

the human, which presents an advantage to other models (rats,

for example, present in their Ab sequence three amino acid substi-

tution; Figure 2). In this sense, differently to transgenic animals,

there is no need to overexpress this human APP to generate signif-

icant levels of amyloid protein, which will help to avoid the over-

expression of APP. This is an important question, as it has been

postulated as to why there is a limited neuronal loss in the APP

transgenic models and is one of the main advantages of the O. de-

gus as a model in preclinical research of this pathology. AD models

usually reproduce the pathological hallmarks of familial AD cases,

Figure 1 Characteristics of Octodon degus. Brief description of several characteristics that naturally develop in the O. degus making it useful as an

animal model in several fields. Numbers in brackets are for the correspondent reference in the bibliography.

Figure 2 Amino acid Ab sequence. Differences and similarities between mice/rat, human, and Octodon degus amino acid Ab sequence. Differently from

the mice/rat, the O. degus is only one amino acid different from the human sequence [28,29].
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which represent around 5% of total cases of AD [16]. The initiat-

ing pathogenic mechanisms for the appearance of sporadic AD are

not fully described, and due to the spontaneous growth of such

markers in the O. degus, it could be advantageous to use this ani-

mal within an experimental context.

Nevertheless, as promising as this animal might be, it still needs

to satisfy certain requirements before it can be used as an appro-

priate model. In this sense, it is worth mentioning that the histo-

pathological changes occurring in O. degus brains are only

observed in aged animals [28,29] and have never been detected in

young animals so far. Similar comments may be made regarding

tau, which suggests that amyloid and tau deposition are age

dependent, as they are in patients with AD [30,31] and in some of

the more successful transgenic mice studied to date [10]. Never-

theless, differently from transgenic models that require mutated

form of tau [32], this mutation is neither present in humans nor

in the O. degus, thus arising as a more suitable alternative given

that similarly to what occurs in humans.

Another interesting analogy concerns the cholinergic system.

The cerebral cortex of some human and non-human primates

contains acetylcholine (AChE)-rich pyramidal neurons, which

have been seen to decline in numbers during the progression of

AD, a decrease claimed to be partly responsible for the memory

deficits in Alzheimer patients [15,19]. Octodon degus apparently

shares the same AChE-rich neurons that are found in the cerebral

cortex of adult humans. Moreover, the high degree of homology

(97.5%) between the human and O. degus in Ab sequence and the

tau structure, possibly triggered by the Ab found in these animals,

suggests that both play a major role in the appearance of AD

markers in this rodent, including the presence of extra- and intra-

cellular amyloid deposits and NFTs [10,28,31].

Octodon degus, What Does It Offer?

We have already mentioned the histological advantages that this

model presents for AD research. However, without a cognitive

counterpart, assessment of this model is not complete. As men-

tioned above, one of the key features of an animal model for AD

should be its ability to mimic the cognitive and behavioral

response in the different domains affected by this illness.

It has been recently demonstrated that the age-progressive

accumulation of Ab oligomers and phosphorylated tau proteins in

O. degus from 12 to 36 months negatively correlated with their

performance in spatial and object recognition memory measured

by two different behavioral paradigms: the Object Recognition

Memory task and a spatial T-Maze. In this work, Ardiles et al.

demonstrate that memory performance declines in an age-depen-

dent manner, as aged animals made fewer correct choices in the

arms of the T-Maze, and the time spent exploring the novel

objects was significantly reduced in the object recognition task.

Interestingly, the synaptic strength in the old O. deguswas reduced

compared with the young ones, and the postsynaptic transmission

was also impaired [33].

As memory impairment is the first manifestation of AD symp-

toms and the most prominent of observable consequences, one of

the requirements that O. degus should fulfill is that it should dis-

criminate in different cognitive tests and different memory deficits

classically impaired in AD. Moreover, this should be achieved in

response to the different challenges that are used to induce cogni-

tive impairment, one of the most widespread of which is sleep

deprivation (SD).

Sleep deprivation has been widely documented as one of the

challenges that most effectively induce transient cognitive impair-

ment [34–37] in animals [38–40] and humans [41]. SD has also

been studied in the O. degus [42] (Figure 3). This condition affects

the formation, expression, and retrieval of memories [36,37] and

produces a deficient consolidation in both procedural and declara-

tive memories [34,43]. Evaluating memory impairment caused by

this challenge in the O. degus is especially interesting, given their

phase inversion capacity [22]. Sleep-wake deregulation is com-

monly seen in AD [44,45] and is displayed as agitation, disrupted

sleep, or breathing difficulties [44]. Sleep studies performed on

O. degus have demonstrated that, despite being diurnal, this animal

is able to switch from diurnal to nocturnal phase behavior in a few

days [46]. Together with all the AD-like hallmarks displayed by

this rodent, this chronobiological characteristic adds value to the

O. degus as an attractive model of the cognitive decline and behav-

ioral outcome observed in age-related neurodegenerative diseases

and also confirms SD as an appropriate methodological choice.

With this method, researchers would be able to induce transitory

memory deficits in both young and old animals to further compare

the impact of such procedure and the effect of aging and histopath-

ological hallmarks formation on the behavioral outcome.

The most noteworthy feature of AD is memory loss, but it is not

the only one. Besides the well-known deficit in problem solving

[47,48] and spatial orientation [48,49], patients with AD also pres-

ent a wide range of psychological affectations such as stress [50]

and anxiety [51,52], as well as different systemic impairments

[53]. In this sense, it has been demonstrated that the O. degus may

develop atherosclerosis, a pathological states frequently concomi-

tant with AD [54]. It has been demonstrated that this rodent is

able to develop an atherosclerosis condition directly derived from

Figure 3 Procedural scheme of the sleep deprivation (SD) induced by gentle handling. Adapted to the normal diurnal activity of the Octodon degus, SD

challenge starts at 7 p.m. in a 12/12-h light and dark cycle. Gentle handling is a non-stressful way of preventing the animal from sleeping. After the

procedure, the behavioral test takes place [42].
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a rich-cholesterol diet, together with a lipoprotein metabolism

similar to humans [55]. This combined with the presence of

hyperglycemia strongly correlates with the appearance of type 2

diabetes [56]. Interestingly, aged O. degus also share with humans

these pathological conditions [55].

Despite the fact that many studies have shared inconsistent

results concerning age-related changes in anxiety in different

rodent models [57,58], there is evidence of a significant age-

related effect in O. degus (young and old adults) in the open-field

test and dark and light test, two widely validated procedures to

assess anxiety in rodent models [59]. Popovic et al. [60] explored

the relationship between age and anxiety and demonstrated that

the older group spent less time in the center of the open field com-

pared with the young adult group and that the latter group were

more willing to spend more time in the light than the older ones

[61], suggesting that anxiety may increase with age in these ani-

mals.

Another AD-like symptom that is apparent in the O. degus is

related to their social life. It is known that in many cases of AD,

patients tend to develop social problems mainly for two reasons:

the dementia associated with the disorder and the stress caused to

caregivers [62,63]. Octodon degus is generally described as a very

social rodent with a highly complex social behavior [23,24]. How-

ever, as in AD, this animal is also subjected to problematic interac-

tions with other members of its colony when stressful events

occur [64]. In this sense, Poeggel et al. [65] reported severe

behavioral deficits and neural alterations in the frontal cortex,

which also shown to be affected in patients with AD [63,66].

It is also common to find patients who have difficulty in manip-

ulating complex objects, or performing fine motor movements

[67,68]. To date, the range of possibilities to test this particular

deficit is scarce and is mainly confined to non-human primates.

However, to the best of our knowledge, there is no literature cov-

ering manipulative and fine motor problems in rodents. Thus, it is

worth mentioning that O. degus is the only rodent to date which

has been demonstrated to be sensitive to training in object manip-

ulation toward obtaining a reward [69]. The authors of this work

were able to train five animals to retrieve a food reward located in

a platform that could only be reached using one of the different

tools to which they were given access. Animals learned the task

with the same efficiency as shown by non-human primates in

similar conditions [70], demonstrating an increasingly under-

standing of tool usage, not only regarding the physical properties

of the tool, but also its functional attributes [69].

Further Directions

We have reviewed a range of studies performed with the O. degus,

a diurnal rodent native to Chile. The main interest in this animal

in the field of cognition is that it has recently been proposed as a

putative model for AD, principally because it presents two of the

major histopathological markers for this disorder (b-Amyloid pla-

ques and NFTs containing hyperphosphorylated tau). Several

reports have also suggested that cognitive impairment in O. degus

may be compared with that observed in humans. Therefore, this

animal could represent one of the most promising models for the

study of cognitive impairment associated with AD. While investi-

gation with O. degus in the field of cognitive sciences is still in its

early stages, we believe that the degus provides an excellent

opportunity for exploring the mechanisms underlying late devel-

opmental changes in the nervous system, and therefore, the

behavioral and cognitive outcomes resulting from such changes.
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